博客
关于我
3D Object Detection with Pointformer
阅读量:579 次
发布时间:2019-03-09

本文共 977 字,大约阅读时间需要 3 分钟。

没错!Transformer的"魔爪"已经伸向3D目标检测了。

Pointformer:用于3D点云的特征学习backbone,可结合并提高现有的3D点云目标检测网络性能,如VoteNet、PointRCNN和CBGS等。

注:文末附【Transformer】和【3D目标检测】学习交流群

Transformer最近在3D点云方向应用的工作可以看一下:

Pointformer

3D Object Detection with Pointformer

在这里插入图片描述

  • 作者单位:清华大学(黄高团队), 亚马逊Alexa AI等
  • 论文:https://arxiv.org/abs/2012.11409

由于3D点云数据的不规则性,从点云进行3D目标检测的特征学习非常具有挑战性。

在本文中,我们提出了Pointformer,这是专为3D点云设计的Transformer backbone,可以有效地学习特征。

在这里插入图片描述

具体而言,采用Local Transformer模块对局部区域中的点之间的交互进行建模,从而在对象级别学习上下文相关的区域特征。Global Transformer旨在学习场景级别的上下文感知表示。

为了进一步捕获多尺度表示之间的依赖关系,我们提出了“Local-Global Transformer”,以将局部特征与高分辨率的全局特征集成在一起。此外,我们引入了一个有效的坐标优化模块,以将向下采样的点移动到更靠近对象质心的位置,从而改善了对象proposal的生成。

在这里插入图片描述

Local Transformer

在这里插入图片描述

主要贡献:

在这里插入图片描述

实验结果

我们将Pointformer用作最新目标检测模型的基础,并在室内和室外数据集上展示了优于原始模型的重大改进。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

Transformer交流群

已建立CVer-Transformer微信交流群!想要进Transformer学习交流群的同学,可以直接加微信号:CVer5555。加的时候备注一下:Transformer+学校+昵称,即可。然后就可以拉你进群了。

3D目标检测交流群

建了CVer-目标检测交流群!想要进检测学习交流群的同学,可以直接加微信号:CVer5555。加的时候备注一下:3D目标检测+学校+昵称,即可。然后就可以拉你进群了。

强烈推荐大家关注CVer知乎账号和CVer微信公众号,可以快速了解到最新优质的CV论文。

在这里插入图片描述

转载地址:http://kkwsz.baihongyu.com/

你可能感兴趣的文章
MYSQL一直显示正在启动
查看>>
MySQL一站到底!华为首发MySQL进阶宝典,基础+优化+源码+架构+实战五飞
查看>>
MySQL万字总结!超详细!
查看>>
Mysql下载以及安装(新手入门,超详细)
查看>>
MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
查看>>
MySQL不同字符集及排序规则详解:业务场景下的最佳选
查看>>
Mysql不同官方版本对比
查看>>
MySQL与Informix数据库中的同义表创建:深入解析与比较
查看>>
mysql与mem_细说 MySQL 之 MEM_ROOT
查看>>
MySQL与Oracle的数据迁移注意事项,另附转换工具链接
查看>>
mysql丢失更新问题
查看>>
MySQL两千万数据优化&迁移
查看>>
MySql中 delimiter 详解
查看>>
MYSQL中 find_in_set() 函数用法详解
查看>>